Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Am Nat ; 203(4): E107-E127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489775

RESUMO

AbstractUnderstanding and predicting the evolutionary responses of complex morphological traits to selection remains a major challenge in evolutionary biology. Because traits are genetically correlated, selection on a particular trait produces both direct effects on the distribution of that trait and indirect effects on other traits in the population. The correlations between traits can strongly impact evolutionary responses to selection and may thus impose constraints on adaptation. Here, we used museum specimens and comparative quantitative genetic approaches to investigate whether the covariation among cranial traits facilitated or constrained the response to selection during the major dietary transitions in one of the world's most ecologically diverse mammalian families-the phyllostomid bats. We reconstructed the set of net selection gradients that would have acted on each cranial trait during the major transitions to feeding specializations and decomposed the selection responses into their direct and indirect components. We found that for all transitions, most traits capturing craniofacial length evolved toward adaptive directions owing to direct selection. Additionally, we showed instances of dietary transitions in which the complex interaction between the patterns of covariation among traits and the strength and direction of selection either constrained or facilitated evolution. Our work highlights the importance of considering the within-species covariation estimates to quantify evolvability and to disentangle the relative contribution of variational constraints versus selective causes for observed patterns.


Assuntos
Quirópteros , Seleção Genética , Humanos , Animais , Quirópteros/genética , Fenótipo , Folhas de Planta , Evolução Biológica
2.
Genetics ; 226(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38386896

RESUMO

The genetic architecture of trait variance has long been of interest in genetics and evolution. One of the earliest attempts to understand this architecture was presented in Lerner's Genetic Homeostasis (1954). Lerner proposed that heterozygotes should be better able to tolerate environmental perturbations because of functional differences between the alleles at a given locus, with each allele optimal for slightly different environments. This greater robustness to environmental variance, he argued, would result in smaller trait variance for heterozygotes. The evidence for Lerner's hypothesis has been inconclusive. To address this question using modern genomic methods, we mapped loci associated with differences in trait variance (vQTL) on 1,101 individuals from the F34 of an advanced intercross between LG/J and SM/J mice. We also mapped epistatic interactions for these vQTL in order to understand the influence of epistasis for the architecture of trait variance. We did not find evidence supporting Lerner's hypothesis, that heterozygotes tend to have smaller trait variances than homozygotes. We further show that the effects of most mapped loci on trait variance are produced by epistasis affecting trait means and that those epistatic effects account for about a half of the differences in genotypic-specific trait variances. Finally, we propose a model where the different interactions between the additive and dominance effects of the vQTL and their epistatic partners can explain Lerner's original observations but can also be extended to include other conditions where heterozygotes are not the least variable genotype.


Assuntos
Epistasia Genética , Modelos Genéticos , Camundongos , Masculino , Animais , Fenótipo , Genótipo , Camundongos Endogâmicos , Heterozigoto , Homozigoto
4.
Bone Rep ; 17: 101615, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36091331

RESUMO

Introduction: Knowledge of bone structure-function relationships in mice has been based on relatively small sample sets that limit generalizability. We sought to investigate structure-function relationships of long bones from a large population of genetically diverse mice. Therefore, we analyzed previously published data from the femur and radius of male and female mice from the F34 generation of the Large-by-Small advanced intercross line (LGXSM AI), which have over a two-fold continuous spread of bone and body sizes (Silva et al. 2019 JBMR). Methods: Morphological traits, mechanical properties, and estimated material properties were collected from the femur and radius from 1113 LGXSM AI adult mice (avg. age 25 wks). Males and females fed a low-fat or high-fat diet were evaluated to increase population variation. The data were analyzed using principal component analysis (PCA), Pearson's correlation, and multivariate linear regression. Results: Using PCA groupings and hierarchical clustering, we identified a reduced set of traits that span the population variation and are relatively independent of each other. These include three morphometry parameters (cortical area, medullary area, and length), two mechanical properties (ultimate force and post-yield displacement), and one material property (ultimate stress). When comparing traits of the femur to the radius, morphological traits are moderately well correlated (r2: 0.18-0.44) and independent of sex and diet. However, mechanical and material properties are weakly correlated or uncorrelated between the long bones. Ultimate force can be predicted from morphology with moderate accuracy for both long bones independent of variations due to genetics, sex, or diet; however, predictions miss up to 50 % of the variation in the population. Estimated material properties in the femur are moderately to strongly correlated with bone size parameters, while these correlations are very weak in the radius. Discussion: Our results indicate that variation in cortical bone phenotype in the F34 LGXSM AI mouse population can be adequately described by a reduced set of bone traits. These traits include cortical area, medullary area, bone length, ultimate force, post-yield displacement, and ultimate stress. The weak correlation of mechanical and material properties between the femur and radius indicates that the results from routine three-point bending tests of one long bone (e.g., femur) may not be generalizable to another long bone (e.g., radius). Additionally, these properties could not be fully predicted from bone morphology alone, confirming the importance of mechanical testing. Finally, material properties of the femur estimated based on beam theory equations showed a strong dependence on geometry that was not seen in the radius, suggesting that differences in femur size within a study may confound interpretation of estimated material properties.

5.
Sci Data ; 9(1): 230, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614082

RESUMO

Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph ).


Assuntos
Bases de Dados Factuais , Camundongos , Animais , Encéfalo , Camundongos/anatomia & histologia , Microtomografia por Raio-X
6.
Elife ; 112022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356864

RESUMO

Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and neurological traits. Parent-of-origin effects can be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-of-origin effects propagate. We identify a network comprised of three imprinted and six non-imprinted genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes comprising it jointly serve cellular functions associated with growth. We focus on two genes, Nnat and F2r, whose interaction associates with serum glucose levels across generations in high-fat-fed females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Animais , Feminino , Genômica , Camundongos , Camundongos Endogâmicos , Fenótipo
7.
Genes (Basel) ; 12(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573350

RESUMO

In newborns, severe congenital heart defects are rarer than mild ones. This epidemiological relationship between heart defect severity and incidence lacks explanation. Here, an analysis of ~10,000 Nkx2-5+/- mice from two inbred strain crosses illustrates the fundamental role of epistasis. Modifier genes raise or lower the risk of specific defects via pairwise (G×GNkx) and higher-order (G×G×GNkx) interactions with Nkx2-5. Their effect sizes correlate with the severity of a defect. The risk loci for mild, atrial septal defects exert predominantly small G×GNkx effects, while the loci for severe, atrioventricular septal defects exert large G×GNkx and G×G×GNkx effects. The loci for moderately severe ventricular septal defects have intermediate effects. Interestingly, G×G×GNkx effects are three times more likely to suppress risk when the genotypes at the first two loci are from the same rather than different parental inbred strains. This suggests the genetic coadaptation of interacting G×G×GNkx loci, a phenomenon that Dobzhansky first described in Drosophila. Thus, epistasis plays dual roles in the pathogenesis of congenital heart disease and the robustness of cardiac development. The empirical results suggest a relationship between the fitness cost and genetic architecture of a disease phenotype and a means for phenotypic robustness to have evolved.


Assuntos
Aptidão Genética , Comunicação Interatrial/genética , Comunicação Interventricular/genética , Defeitos dos Septos Cardíacos/genética , Proteína Homeobox Nkx-2.5/genética , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Loci Gênicos , Defeitos dos Septos Cardíacos/diagnóstico , Comunicação Interatrial/diagnóstico , Comunicação Interventricular/diagnóstico , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Índice de Gravidade de Doença
8.
J Exp Zool B Mol Dev Evol ; 334(2): 100-112, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32017444

RESUMO

Variation in pelvic morphology has a complex genetic basis and its patterning and specification is governed by conserved developmental pathways. Whether the mechanisms underlying the differentiation and specification of the pelvis also produce the morphological covariation on which natural selection may act, is still an open question in evolutionary developmental biology. We use high-resolution quantitative trait locus (QTL) mapping in the F34 generation of an advanced intercross experiment (LG,SM-G34 ) to characterize the genetic architecture of the mouse pelvis. We test the prediction that genomic features linked to developmental patterning and differentiation of the hind limb and pelvis and the regulation of chondrogenesis are overrepresented in QTL. We find 31 single QTL trait associations at the genome- or chromosome-wise significance level coalescing to 27 pleiotropic loci. We recover further QTL at a more relaxed significance threshold replicating locations found in a previous experiment in an earlier generation of the same population. QTL were more likely than chance to harbor Pitx1 and Sox9 Class II chromatin immunoprecipitation-seq features active during development of skeletal features. There was weak or no support for the enrichment of seven more categories of developmental features drawn from the literature. Our results suggest that genotypic variation is channeled through a subset of developmental processes involved in the generation of phenotypic variation in the pelvis. This finding indicates that the evolvability of complex traits may be subject to biases not evident from patterns of covariance among morphological features or developmental patterning when either is considered in isolation.


Assuntos
Fatores de Transcrição Box Pareados/metabolismo , Pelve/crescimento & desenvolvimento , Fatores de Transcrição SOX9/metabolismo , Animais , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Genótipo , Camundongos , Fatores de Transcrição Box Pareados/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Transcrição SOX9/genética
9.
Dev Dyn ; 248(12): 1232-1242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31469941

RESUMO

BACKGROUND: Cleft lip and palate is one of the most common human birth defects, but the underlying etiology is poorly understood. The A/WySn mouse is a spontaneously occurring model of multigenic clefting in which 20% to 30% of individuals develop an orofacial cleft. Recent work has shown altered methylation at a specific retrotransposon insertion downstream of the Wnt9b locus in clefting animals, which results in decreased Wnt9b expression. RESULTS: Using a newly developed protocol that allows us to measure morphology, gene expression, and DNA methylation in the same embryo, we relate gene expression in an individual embryo directly to its three-dimensional morphology for the first time. We find that methylation at the retrotransposon relates to Wnt9b expression and morphology. IAP methylation relates to shape of the nasal process in a manner consistent with clefting. Embryos with low IAP methylation exhibit increased among-individual variance in facial shape. CONCLUSIONS: Methylation and gene expression relate nonlinearly to nasal process morphology. Individuals at one end of a continuum of phenotypic states display a clinical phenotype and increased phenotypic variation. Variable penetrance and expressivity in this model is likely determined both by among-individual variation in methylation and changes in phenotypic robustness along the underlying liability distribution for orofacial clefting.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Variação Biológica Individual , Fenda Labial/complicações , Fenda Labial/patologia , Fissura Palatina/complicações , Fissura Palatina/patologia , Metilação de DNA , Embrião de Mamíferos , Face/embriologia , Face/patologia , Estudos de Associação Genética , Heterogeneidade Genética , Humanos , Camundongos , Camundongos Transgênicos , Palato/embriologia , Palato/patologia , Fenótipo , Retroelementos/genética , Proteínas Wnt/genética
10.
J Bone Miner Res ; 34(4): 711-725, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30615803

RESUMO

Obesity is generally protective against osteoporosis and bone fracture. However, recent studies indicate that the influence of obesity on the skeleton is complex and can be detrimental. We evaluated the effects of a high-fat, obesogenic diet on the femur and radius of 1100 mice (males and females) from the Large-by-Small advanced intercross line (F34 generation). At age 5 months, bone morphology was assessed by microCT and mechanical properties by three-point bending. Mice raised on a high-fat diet had modestly greater cortical area, bending stiffness, and strength. Size-independent material properties were unaffected by a high-fat diet, indicating that diet influenced bone quantity but not quality. Bone size and mechanical properties were strongly correlated with body mass. However, the increases in many bone traits per unit increase in body mass were less in high-fat diet mice than low-fat diet mice. Thus, although mice raised on a high-fat diet have, on average, bigger and stronger bones than low-fat-fed mice, a high-fat diet diminished the positive relationship between body mass and bone size and whole-bone strength. The findings support the concept that there are diminishing benefits to skeletal health with increasing obesity. © 2019 American Society for Bone and Mineral Research.


Assuntos
Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Fêmur/crescimento & desenvolvimento , Rádio (Anatomia)/crescimento & desenvolvimento , Animais , Gorduras na Dieta/efeitos adversos , Feminino , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo
11.
Arthritis Rheumatol ; 71(3): 370-381, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30225954

RESUMO

OBJECTIVE: Recombinant inbred mouse strains generated from an LG/J and SM/J intercross offer a unique resource to study complex genetic traits such as osteoarthritis (OA). We undertook this study to determine the susceptibility of 14 strains to various phenotypes characteristic of posttraumatic OA. We hypothesized that phenotypic variability is associated with genetic variability. METHODS: Ten-week-old male mice underwent surgical destabilization of the medial meniscus (DMM) to induce posttraumatic OA. Mice were killed 8 weeks after surgery, and knee joints were processed for histology to score cartilage degeneration and synovitis. Micro-computed tomography was used to analyze trabecular bone parameters including subchondral bone plate thickness and synovial ectopic calcifications. Gene expression in the knees was assessed using a QuantiGene Plex assay. RESULTS: Broad-sense heritability ranged from 0.18 to 0.58, which suggested that the responses to surgery were moderately heritable. The LGXSM-33, LGXSM-5, LGXSM-46, and SM/J strains were highly susceptible to OA, while the LGXSM-131b, LGXSM-163, LGXSM-35, LGXSM-128a, LGXSM-6, and LG/J strains were relatively OA resistant. This study was the first to accomplish measurement of genetic correlations of phenotypes that are characteristic of posttraumatic OA. Cartilage degeneration was significantly positively associated with synovitis (r = 0.83-0.92), and subchondral bone plate thickness was negatively correlated with ectopic calcifications (r = -0.59). Moreover, we showed that 40 of the 78 genes tested were significantly correlated with various OA phenotypes. However, unlike the OA phenotypes, there was no evidence for genetic variation in differences in gene expression levels between DMM-operated and sham-operated knees. CONCLUSION: For these mouse strains, various characteristics of posttraumatic OA varied with genetic composition, which demonstrated a genetic basis for susceptibility to posttraumatic OA. The heritability of posttraumatic OA was established. Phenotypes exhibited various degrees of correlations; cartilage degeneration was positively correlated with synovitis, but not with the formation of ectopic calcifications. Further investigation of the genome regions that contain genes implicated in OA, as well as further investigation of gene expression data, will be useful for studying mechanisms of OA and identifying therapeutic targets.


Assuntos
Artrite Experimental/genética , Predisposição Genética para Doença/genética , Osteoartrite do Joelho/genética , Lesões do Menisco Tibial/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Articulação do Joelho/metabolismo , Masculino , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Endogâmicos , Fenótipo , Sinovite/genética , Lesões do Menisco Tibial/complicações , Microtomografia por Raio-X
12.
Semin Cell Dev Biol ; 88: 67-79, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29782925

RESUMO

Canalization, or robustness to genetic or environmental perturbations, is fundamental to complex organisms. While there is strong evidence for canalization as an evolved property that varies among genotypes, the developmental and genetic mechanisms that produce this phenomenon are very poorly understood. For evolutionary biology, understanding how canalization arises is important because, by modulating the phenotypic variation that arises in response to genetic differences, canalization is a determinant of evolvability. For genetics of disease in humans and for economically important traits in agriculture, this subject is important because canalization is a potentially significant cause of missing heritability that confounds genomic prediction of phenotypes. We review the major lines of thought on the developmental-genetic basis for canalization. These fall into two groups. One proposes specific evolved molecular mechanisms while the other deals with robustness or canalization as a more general feature of development. These explanations for canalization are not mutually exclusive and they overlap in several ways. General explanations for canalization are more likely to involve emergent features of development than specific molecular mechanisms. Disentangling these explanations is also complicated by differences in perspectives between genetics and developmental biology. Understanding canalization at a mechanistic level will require conceptual and methodological approaches that integrate quantitative genetics and developmental biology.


Assuntos
Evolução Biológica , Epigênese Genética , Epistasia Genética , Estudos de Associação Genética , Genótipo , Fenótipo , Adaptação Fisiológica/genética , Animais , Biologia do Desenvolvimento/métodos , Redes Reguladoras de Genes , Interação Gene-Ambiente , Técnicas Genéticas , Variação Genética , Genética , Humanos , Plantas/genética , Característica Quantitativa Herdável , Seleção Genética
13.
BMC Genomics ; 19(1): 888, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526554

RESUMO

BACKGROUND: While the genetics of obesity has been well defined, the epigenetics of obesity is poorly understood. Here, we used a genome-wide approach to identify genes with differences in both DNA methylation and expression associated with a high-fat diet in mice. RESULTS: We weaned genetically identical Small (SM/J) mice onto a high-fat or low-fat diet and measured their weights weekly, tested their glucose and insulin tolerance, assessed serum biomarkers, and weighed their organs at necropsy. We measured liver gene expression with RNA-seq (using 21 total libraries, each pooled with 2 mice of the same sex and diet) and DNA methylation with MRE-seq and MeDIP-seq (using 8 total libraries, each pooled with 4 mice of the same sex and diet). There were 4356 genes with expression differences associated with diet, with 184 genes exhibiting a sex-by-diet interaction. Dietary fat dysregulated several pathways, including those involved in cytokine-cytokine receptor interaction, chemokine signaling, and oxidative phosphorylation. Over 7000 genes had differentially methylated regions associated with diet, which occurred in regulatory regions more often than expected by chance. Only 5-10% of differentially methylated regions occurred in differentially expressed genes, however this was more often than expected by chance (p = 2.2 × 10- 8). CONCLUSIONS: Discovering the gene expression and methylation changes associated with a high-fat diet can help to identify new targets for epigenetic therapies and inform about the physiological changes in obesity. Here, we identified numerous genes with altered expression and methylation that are promising candidates for further study.


Assuntos
Metilação de DNA/genética , Dieta Hiperlipídica , Regulação da Expressão Gênica , Genoma , Animais , Glicemia/metabolismo , Peso Corporal/genética , Colesterol/sangue , Feminino , Estudos de Associação Genética , Teste de Tolerância a Glucose , Insulina/sangue , Resistência à Insulina , Leptina/sangue , Masculino , Camundongos , Obesidade/sangue , Obesidade/genética , Triglicerídeos/sangue
14.
PLoS One ; 13(2): e0192606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447215

RESUMO

We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.


Assuntos
Metilação de DNA , Dieta Hiperlipídica , Expressão Gênica , Mães , Obesidade/epidemiologia , Animais , Feminino , Camundongos , Fatores de Risco
15.
Am J Phys Anthropol ; 165(2): 269-285, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29154459

RESUMO

OBJECTIVES: Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (VP ) and additive genetic (VA ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? MATERIALS AND METHODS: We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. RESULTS: Covariates account for 1.2-91% of craniofacial VP . EID VA decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. DISCUSSION: Because a relatively large proportion of EID VA is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual VP patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes.


Assuntos
Tamanho Corporal , Face/anatomia & histologia , Variação Genética , Papio , Crânio/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Tamanho Corporal/genética , Tamanho Corporal/fisiologia , Cefalometria , Feminino , Variação Genética/genética , Variação Genética/fisiologia , Genética Populacional , Masculino , Papio/anatomia & histologia , Papio/genética , Papio/fisiologia
16.
J Diabetes Metab Disord ; 17(2): 297-307, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30918865

RESUMO

PURPOSE: Obesity is linked to cognitive dysfunction in humans and rodents, and its effects can be passed on to the next generation. However, the extent of these effects is not well understood. The purpose of this study was to determine the effect of a prenatal maternal high-fat diet and an individual high-fat diet in inbred mice. METHODS: We varied maternal diet and offspring diet to test the hypothesis that a high-fat diet would increase anxiety, reduce activity levels, and impair nest-building. First, we fed a high-fat (HF) or low-fat (LF) diet to genetically identical female Small (SM/J) mice and mated them with LF males. We cross-fostered all offspring to LF-fed SM/J nurses and weaned them onto an HF or LF diet. We weighed the mice weekly and we tested anxiety with the Open Field Test, activity levels with instantaneous scan sampling, and nest building using the Deacon Scale. RESULTS: Diet significantly affected weight, with HF females weighing 28.2 g (± 1.4 g SE) and LF females weighing 15.1 g (± 1.6 g SE) at 17 weeks old. The offspring's own diet had major behavioral effects. HF mice produced more fecal boli and urinations in the Open Field Test, built lower-quality nests, and had lower activity in adulthood than LF mice. The only trait that a prenatal maternal diet significantly affected was whether the offspring built their nests inside or outside of a hut. CONCLUSIONS: Offspring diet, but not prenatal maternal diet, affected a wide range of behaviors in these mice.

17.
Nat Commun ; 8(1): 1970, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213092

RESUMO

Robustness to perturbation is a fundamental feature of complex organisms. Mutations are the raw material for evolution, yet robustness to their effects is required for species survival. The mechanisms that produce robustness are poorly understood. Nonlinearities are a ubiquitous feature of development that may link variation in development to phenotypic robustness. Here, we manipulate the gene dosage of a signaling molecule, Fgf8, a critical regulator of vertebrate development. We demonstrate that variation in Fgf8 expression has a nonlinear relationship to phenotypic variation, predicting levels of robustness among genotypes. Differences in robustness are not due to gene expression variance or dysregulation, but emerge from the nonlinearity of the genotype-phenotype curve. In this instance, embedded features of development explain robustness differences. How such features vary in natural populations and relate to genetic variation are key questions for unraveling the origin and evolvability of this feature of organismal development.


Assuntos
Evolução Molecular , Variação Genética , Modelos Genéticos , Fenótipo , Animais , Evolução Biológica , Simulação por Computador , Fator 8 de Crescimento de Fibroblasto/genética , Dosagem de Genes , Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genótipo , Masculino , Camundongos , Mutação , Dinâmica não Linear , RNA/genética
18.
Connect Tissue Res ; 58(3-4): 295-304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27435997

RESUMO

Purpose/Aim: Meniscus tears are a common injury to the knee associated with the development of osteoarthritis. Gene expression in the injured meniscus may be associated with early degeneration in the articular cartilage. The purpose of this study was to test the hypothesis that gene expression in meniscus tears is associated with early degenerative changes in the articular cartilage at the time of partial meniscectomy. MATERIALS AND METHODS: Torn meniscus was removed at the time of partial meniscectomy in 68 patients without radiographic osteoarthritis. Meniscal mRNA expression was measured by quantitative PCR for multiple molecular markers of osteoarthritis and cartilage homeostasis. The presence of early degenerative changes in the knee was recorded by X-ray (N = 63), magnetic resonance imaging (MRI, N = 48), and arthroscopy (N = 63). Gene expression was tested for correlation with the presence/absence of degenerative changes after adjusting for age, sex, and body mass index. RESULTS: Overall gene expression varied significantly with degenerative changes based on X-ray (P = 0.047) and MRI (P = 0.018). The linear combination of gene variation was also significant. However, only adiponectin (ADIPOQ) (P = 0.015) was expressed at a significantly lower level in patients with chondrosis on MRI, while the expression of ADIPOQ (P = 0.035) and resistin (RETN) (P = 0.017) was higher in patients with early degenerative changes on X-ray. None of the genes varied significantly with presence/absence of chondrosis as measured by arthroscopy. CONCLUSIONS: There is an overall association of gene expression in meniscal tears to early degenerative changes in the knee, but only a limited number of specific genes demonstrate this relationship. The roles of adiponectin and resistin in knee injury and osteoarthritis deserve further study.


Assuntos
Cartilagem Articular/lesões , Regulação da Expressão Gênica , Traumatismos do Joelho/genética , Articulação do Joelho/patologia , Menisco/lesões , Adolescente , Adulto , Idoso , Artroscopia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Criança , Feminino , Humanos , Traumatismos do Joelho/diagnóstico por imagem , Traumatismos do Joelho/patologia , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Menisco/diagnóstico por imagem , Menisco/patologia , Pessoa de Meia-Idade , Raios X , Adulto Jovem
19.
Genetics ; 204(4): 1601-1612, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27784721

RESUMO

Evolutionary studies have long emphasized that the genetic architecture of traits holds important microevolutionary consequences. Yet, studies comparing the genetic architecture of traits across species are rare, and discussions of the evolution of genetic systems are made on theoretical arguments rather than on empirical evidence. Here, we compared the genetic architecture of cranial traits in two different mammalian model organisms: the gray short-tailed opossum, Monodelphis domestica, and the laboratory mouse, Mus musculus We show that both organisms share a highly polygenic genetic architecture for craniofacial traits, with many loci of small effect. However, these two model species differ significantly in the overall degree of pleiotropy, N, of the genotype-to-phenotype map, with opossums presenting a higher average N They also diverge in their degree of genetic modularity, with opossums presenting less modular patterns of genetic association among traits. We argue that such differences highlight the context dependency of gene effects, with developmental systems shaping the variational properties of genetic systems. Finally, we also demonstrate based on the opossum data that current measurements for the relationship between the mutational effect size and N need to be re-evaluated in relation to the importance of the cost of pleiotropy for mammals.


Assuntos
Evolução Molecular , Pleiotropia Genética , Genótipo , Animais , Camundongos , Modelos Genéticos , Monodelphis/genética
20.
Mol Cell Endocrinol ; 435: 94-102, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27555292

RESUMO

Despite decades of progress, congenital heart disease remains a major cause of mortality and suffering in children and young adults. Prevention would be ideal, but formidable biological and technical hurdles face any intervention that seeks to target the main causes, genetic mutations in the embryo. Other factors, however, significantly modify the total risk in individuals who carry mutations. Investigation of these factors could lead to an alternative approach to prevention. To define the risk modifiers, our group has taken an "experimental epidemiologic" approach via inbred mouse strain crosses. The original intent was to map genes that modify an individual's risk of heart defects caused by an Nkx2-5 mutation. During the analysis of >2000 Nkx2-5(+/-) offspring from one cross we serendipitously discovered a maternal-age associated risk, which also exists in humans. Reciprocal ovarian transplants between young and old mothers indicate that the incidence of heart defects correlates with the age of the mother and not the oocyte, which implicates a maternal pathway as the basis of the risk. The quantitative risk varies between strain backgrounds, so maternal genetic polymorphisms determine the activity of a factor or factors in the pathway. Most strikingly, voluntary exercise by the mother mitigates the risk. Therefore, congenital heart disease can in principle be prevented by targeting a maternal pathway even if the embryo carries a causative mutation. Further mechanistic insight is necessary to develop an intervention that could be implemented on a broad scale, but the physiology of maternal-fetal interactions, aging, and exercise are notoriously complex and undefined. This suggests that an unbiased genetic approach would most efficiently lead to the relevant pathway. A genetic foundation would lay the groundwork for human studies and clinical trials.


Assuntos
Modelos Animais de Doenças , Predisposição Genética para Doença , Cardiopatias Congênitas/etiologia , Cardiopatias Congênitas/prevenção & controle , Idade Materna , Polimorfismo de Nucleotídeo Único , Complicações na Gravidez/genética , Animais , Exercício Físico , Feminino , Cardiopatias Congênitas/genética , Humanos , Camundongos , Gravidez , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...